Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
3.
AIDS ; 37(1): F1-F10, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2152274

ABSTRACT

OBJECTIVES: Many vaccines require higher/additional doses or adjuvants to provide adequate protection for people with HIV (PWH). Our objective was to compare COVID-19 vaccine immunogenicity in PWH to HIV-negative individuals. DESIGN: In a Canadian multi-center prospective, observational cohort of PWH receiving at least two COVID-19 vaccinations, we measured vaccine-induced immunity at 3 and 6 months post 2nd and 1-month post 3rd doses. METHODS: The primary outcome was the percentage of PWH mounting vaccine-induced immunity [co-positivity for anti-IgG against SARS-CoV2 Spike(S) and receptor-binding domain proteins] 6 months post 2nd dose. Univariable and multivariable logistic regressions were used to compare COVID-19-specific immune responses between groups and within subgroups. RESULTS: Data from 294 PWH and 267 controls were analyzed. Immunogenicity was achieved in over 90% at each time point in both groups. The proportions of participants achieving comparable anti-receptor-binding domain levels were similar between the group at each time point. Anti-S IgG levels were similar by group at month 3 post 2nd dose and 1-month post 3rd dose. A lower proportion of PWH vs. controls maintained vaccine-induced anti-S IgG immunity 6 months post 2nd dose [92% vs. 99%; odds ratio: 0.14 (95% confidence interval: 0.03, 0.80; P = 0.027)]. In multivariable analyses, neither age, immune non-response, multimorbidity, sex, vaccine type, or timing between doses were associated with reduced IgG response. CONCLUSION: Vaccine-induced IgG was elicited in the vast majority of PWH and was overall similar between groups. A slightly lower proportion of PWH vs. controls maintained vaccine-induced anti-S IgG immunity 6 months post 2nd dose demonstrating the importance of timely boosting in this population.


Subject(s)
AIDS Vaccines , COVID-19 , HIV Infections , Humans , COVID-19 Vaccines , Immunogenicity, Vaccine , Prospective Studies , RNA, Viral , COVID-19/prevention & control , Canada , SARS-CoV-2 , Antibodies
4.
BMJ open ; 12(8), 2022.
Article in English | EuropePMC | ID: covidwho-1989972

ABSTRACT

Introduction Initial reports suggest people experiencing homelessness (PEH) are at high risk for SARS-CoV-2 infection and associated morbidity and mortality. However, there have been few longitudinal evaluations of the spread and impact of COVID-19 among PEH. This study will estimate the prevalence and incidence of COVID-19 infections in a cohort of PEH followed prospectively in Toronto, Canada. It will also examine associations between individual-level and shelter-level characteristics with COVID-19 infection, adverse health outcomes related to infection and vaccination. Finally, the data will be used to develop and parameterise a mathematical model to characterise SARS-CoV-2 transmission dynamics, and the transmission impact of interventions serving PEH. Design, methods and analysis Ku-gaa-gii pimitizi-win will follow a random sample of PEH from across Toronto (Canada) for 12 months. 736 participants were enrolled between June and September 2021, and will be followed up at 3-month intervals. At each interval, specimens (saliva, capillary blood) will be collected to determine active SARS-CoV-2 infection and serologic evidence of past infection and/or vaccination, and a detailed survey will gather self-reported information, including a detailed housing history. To examine the association between individual-level and shelter-level characteristics on COVID-19-related infection, adverse outcomes, and vaccination, shelter and healthcare administrative data will be linked to participant study data. Healthcare administrative data will also be used to examine long-term (up to 5 years) COVID-19-related outcomes among participants. Ethics and dissemination Ethical approval was obtained from the Unity Health Toronto and University of Toronto Health Sciences Research Ethics Boards (# 20-272). Ku-gaa-gii pimitizi-win was designed in collaboration with community and service provider partners and people having lived experience of homelessness. Findings will be reported to groups supporting Ku-gaa-gii pimitizi-win, Indigenous and other community partners and service providers, funding bodies, public health agencies and all levels of government to inform policy and public health programs.

5.
J Virol ; 96(13): e0050922, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1891737

ABSTRACT

Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Cytokines , Immunity , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/immunology , COVID-19 Vaccines , Cytokines/immunology , Female , Humans , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-2/immunology , Male , Severity of Illness Index , Time Factors
6.
Mucosal Immunol ; 15(5): 799-808, 2022 05.
Article in English | MEDLINE | ID: covidwho-1805590

ABSTRACT

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , RNA, Messenger/genetics , SARS-CoV-2 , Secretory Component , Vaccination
7.
Clin Immunol ; 237: 108963, 2022 04.
Article in English | MEDLINE | ID: covidwho-1719483

ABSTRACT

Convalescent coronavirus disease 2019 (COVID-19) subjects who receive BNT162b2 develop robust antibody responses against SARS-CoV-2. However, our understanding of the clonal B cell response pre- and post-vaccination in such individuals is limited. Here we characterized B cell phenotypes and the BCR repertoire after BNT162b2 immunization in two convalescent COVID-19 subjects. BNT162b2 stimulated many B cell clones that were under-represented during SARS-CoV-2 infection. In addition, the vaccine generated B cell clusters with >65% similarity in CDR3 VH and VL region consensus sequences both within and between subjects. This result suggests that the CDR3 region plays a dominant role adjacent to heavy and light chain V/J pairing in the recognition of the SARS-CoV-2 spike protein. Antigen-specific B cell populations with homology to published SARS-CoV-2 antibody sequences from the CoV-AbDab database were observed in both subjects. These results point towards the development of convergent antibody responses against the virus in different individuals.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Complementarity Determining Regions , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Complementarity Determining Regions/genetics , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
8.
J Immunol ; 208(2): 429-443, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1674944

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Subject(s)
Antibody Formation , COVID-19/immunology , Immunity, Cellular , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors
9.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1634773

ABSTRACT

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/adverse effects , Canada , Cell Line , Cricetinae , Drug Evaluation, Preclinical , Female , HEK293 Cells , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Liposomes/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/immunology
10.
BMJ Open ; 11(12): e054208, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1623564

ABSTRACT

INTRODUCTION: Most existing vaccines require higher or additional doses or adjuvants to provide similar protection for people living with HIV (PLWH) compared with HIV-uninfected individuals. Additional research is necessary to inform COVID-19 vaccine use in PLWH. METHODS AND ANALYSIS: This multicentred observational Canadian cohort study will enrol 400 PLWH aged >16 years from Montreal, Ottawa, Toronto and Vancouver. Subpopulations of PLWH of interest will include individuals: (1) >55 years of age; (2) with CD4 counts <350 cells/mm3; (3) with multimorbidity (>2 comorbidities) and (4) 'stable' or 'reference' PLWH (CD4 T cells >350 cells/mm3, suppressed viral load for >6 months and <1 comorbidity). Data for 1000 HIV-negative controls will be obtained via a parallel cohort study (Stop the Spread Ottawa), using similar time points and methods. Participants receiving >1 COVID-19 vaccine will attend five visits: prevaccination; 1 month following the first vaccine dose; and at 3, 6 and 12 months following the second vaccine dose. The primary end point will be the percentage of PLWH with COVID-19-specific antibodies at 6 months following the second vaccine dose. Humoral and cell-mediated immune responses, and the interplay between T cell phenotypes and inflammatory markers, will be described. Regression techniques will be used to compare COVID-19-specific immune responses to determine whether there are differences between the 'unstable' PLWH group (CD4 <350 cells/mm3), the stable PLWH cohort and the HIV-negative controls, adjusting for factors believed to be associated with immune response. Unadjusted analyses will reveal whether there are differences in driving factors associated with group membership. ETHICS AND DISSEMINATION: Research ethics boards at all participating institutions have granted ethics approval for this study. Written informed consent will be obtained from all study participants prior to enrolment. The findings will inform the design of future COVID-19 clinical trials, dosing strategies aimed to improve immune responses and guideline development for PLWH. TRIAL REGISTRATION NUMBER: NCT04894448.


Subject(s)
COVID-19 , HIV Infections , COVID-19 Vaccines , Canada , Cohort Studies , Diterpenes , Humans , Multicenter Studies as Topic , Observational Studies as Topic , SARS-CoV-2 , Vaccination
11.
J Immunol ; 207(10): 2581-2588, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1450886

ABSTRACT

SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.


Subject(s)
Adenoids/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Mucous Membrane/immunology , Receptors, Antigen, B-Cell/genetics , Respiratory System/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Child , HEK293 Cells , Humans , Immunologic Memory , Lymphocyte Activation , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
12.
Front Immunol ; 12: 659071, 2021.
Article in English | MEDLINE | ID: covidwho-1302109

ABSTRACT

SARS-CoV-2 is a newly emerged betacoronavirus and the causative agent for the COVID-19 pandemic. Antibodies recognizing the viral spike protein are instrumental in natural and vaccine-induced immune responses to the pathogen and in clinical diagnostic and therapeutic applications. Unlike conventional immunoglobulins, the variable lymphocyte receptor antibodies of jawless vertebrates are structurally distinct, indicating that they may recognize different epitopes. Here we report the isolation of monoclonal variable lymphocyte receptor antibodies from immunized sea lamprey larvae that recognize the spike protein of SARS-CoV-2 but not of other coronaviruses. We further demonstrate that these monoclonal variable lymphocyte receptor antibodies can efficiently neutralize the virus and form the basis of a rapid, single step SARS-CoV-2 detection system. This study provides evidence for monoclonal variable lymphocyte receptor antibodies as unique biomedical research and potential clinical diagnostic reagents targeting SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Fish Proteins/immunology , Petromyzon/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Biological Evolution , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Fish Proteins/genetics , Humans
13.
iScience ; 24(5): 102477, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1201540

ABSTRACT

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.

14.
Nat Commun ; 12(1): 1806, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1146643

ABSTRACT

Better diagnostic tools are needed to combat the ongoing COVID-19 pandemic. Here, to meet this urgent demand, we report a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This serological assay, called SATiN, is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in the liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that SATiN has a similar sensitivity to ELISA, and its readouts are consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics, as well as disease and vaccination management.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Immunoassay/methods , Luciferases/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Spike Glycoprotein, Coronavirus/immunology
15.
J Immunol ; 206(1): 37-50, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-934539

ABSTRACT

There is a pressing need for an in-depth understanding of immunity to SARS-CoV-2. In this study, we investigated human T cell recall responses to fully glycosylated spike trimer, recombinant N protein, as well as to S, N, M, and E peptide pools in the early convalescent phase and compared them with influenza-specific memory responses from the same donors. All subjects showed SARS-CoV-2-specific T cell responses to at least one Ag. Both SARS-CoV-2-specific and influenza-specific CD4+ T cell responses were predominantly of the central memory phenotype; however SARS-CoV-2-specific CD4+ T cells exhibited a lower IFN-γ to TNF ratio compared with influenza-specific memory responses from the same donors, independent of disease severity. SARS-CoV-2-specific T cells were less multifunctional than influenza-specific T cells, particularly in severe cases, potentially suggesting exhaustion. Most SARS-CoV-2-convalescent subjects also produced IFN-γ in response to seasonal OC43 S protein. We observed granzyme B+/IFN-γ+, CD4+, and CD8+ proliferative responses to peptide pools in most individuals, with CD4+ T cell responses predominating over CD8+ T cell responses. Peripheral T follicular helper (pTfh) responses to S or N strongly correlated with serum neutralization assays as well as receptor binding domain-specific IgA; however, the frequency of pTfh responses to SARS-CoV-2 was lower than the frequency of pTfh responses to influenza virus. Overall, T cell responses to SARS-CoV-2 are robust; however, CD4+ Th1 responses predominate over CD8+ T cell responses, have a more inflammatory profile, and have a weaker pTfh response than the response to influenza virus within the same donors, potentially contributing to COVID-19 disease.


Subject(s)
Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Orthomyxoviridae/immunology , SARS-CoV-2/immunology , Adult , Aged , Female , Humans , Male , Middle Aged
16.
Sci Immunol ; 5(52)2020 10 08.
Article in English | MEDLINE | ID: covidwho-842548

ABSTRACT

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19 , Coronavirus Infections/virology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
17.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: covidwho-737501

ABSTRACT

Most of the patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mount a humoral immune response to the virus within a few weeks of infection, but the duration of this response and how it correlates with clinical outcomes has not been completely characterized. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike protein receptor binding domain (RBD) with its receptor, angiotensin-converting enzyme 2 (ACE2). The assay serves as a surrogate neutralization assay and is performed on the same platform and in parallel with an ELISA for the detection of antibodies against the RBD, enabling a direct comparison. The results obtained with our assay correlate with those of 2 viral-based assays, a plaque reduction neutralization test (PRNT) that uses live SARS-CoV-2 virus and a spike pseudotyped viral vector-based assay.


Subject(s)
Antibodies, Neutralizing/immunology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Area Under Curve , COVID-19 , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive/methods , Neutralization Tests , Pandemics , Regression Analysis , Sampling Studies , Treatment Outcome , Viral Envelope Proteins/immunology , COVID-19 Serotherapy
18.
Nat Med ; 26(9): 1422-1427, 2020 09.
Article in English | MEDLINE | ID: covidwho-640071

ABSTRACT

Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date1,2. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes on the basis of their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of advanced antibody discovery platforms.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
19.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Article in English | MEDLINE | ID: covidwho-607956

ABSTRACT

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Leukocytes, Mononuclear/virology , Pneumonia, Viral/virology , Virus Replication/genetics , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genotype , Humans , Kinetics , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL